In the figure below, BAD,BCE,ACFBAD,BCE,ACF and DEFDEF are straight lines. It is given that BA=BCBA=BC, AD=AFAD=AF, EB=EDEB=ED. If BED=xBED=x, find the value xx.
A B C D E F


Answer:

108108

Step by Step Explanation:
  1. Given BAD,BCE,ACFBAD,BCE,ACF and DEFDEF are straight lines and BA=BCBA=BC, AD=AFAD=AF and EB=EDEB=ED. Also, BED=x.BED=x.
    Let ABC=yABC=y and BAC=zBAC=z
  2. In ABCABC,
    BAC=z=BCA[Given BA=BC]BAC+BCA+ABC=180[By Angle sum property of triangles]2z+y=180.....(1)
  3. In BED,
    EB=ED[Given]EBD=EDB=y[Since EBD=ABC]
  4. Since BAD is a straight line,
    FAD=180BAC=180z                    .....(2)
    In ADF,
    ADF=y=DFA[Given AD=AF]ADF+DFA+FAD=180[By Angle sum property of triangles]   2y+180z=180 By (2) 2yz=0.....(3)
  5. From eq(1) and (3), we get,
    y=36
    Now, in BED,
    BED=180EBDEDBx=1802yx=1802×36[Substituting the value of y]x=108
  6. Hence, the value of x is 108.

You can reuse this answer
Creative Commons License