Simplify: cot2θ(secθ−11+sinθ)+sec2θ(sinθ−11+secθ)cot2θ(secθ−11+sinθ)+sec2θ(sinθ−11+secθ)cot2θ(secθ−11+sinθ)+sec2θ(sinθ−11+secθ)
Answer:
00
- On adding the two fractions, we have:
cot2θ(secθ−11+sinθ)+sec2θ(sinθ−11+secθ)=cot2θ(secθ−1)(secθ+1)+sec2θ(sinθ−1)(sinθ+1)(1+sinθ)(1+secθ)=cot2θ(sec2θ−1)+sec2θ(sin2θ−1)(1+sinθ)(1+secθ)=cot2θtan2θ−sec2θcos2θ(1+sinθ)(1+secθ)=1−1(1+sinθ)(1+secθ)=0